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Abstract. Children learn through play. We introduce the analogous idea of
learning programs through play. In this approach, a program induction system
(the learner) is given a set of user-supplied build tasks and initial background
knowledge (BK). Before solving the build tasks, the learner enters an unsuper-
vised playing stage where it creates its own play tasks to solve, tries to solve
them, and saves any solutions (programs) to the BK. After the playing stage is
finished, the learner enters the supervised building stage where it tries to solve
the build tasks and can reuse solutions learnt whilst playing. The idea is that
playing allows the learner to discover reusable general programs on its own
which can then help solve the build tasks. We implement our idea in Playgol, a
new inductive logic programming system. Our experimental results suggest
that playing can substantially improve learning performance.

1 Introduction

Children learn through play [17–19]. We introduce the analogous idea of
learning programs through play [1]. In this approach, a program induction
system (the learner) is given a set of user-supplied build tasks and initial
background knowledge (BK). Whereas a standard program induction system
would immediately try to solve the build tasks, in our approach the learner
first enters an unsupervised playing stage. In this stage the learner creates its
own play tasks to solve, tries to solve them, and saves any solutions (programs)
to the BK. After the playing stage is finished, the learner enters the supervised
building stage where it tries to solve the user-supplied build tasks and can
reuse solutions learned whilst playing. The idea is that playing allows the
learner to discover reusable general programs on its own which can then be
reused in the building stage, and thus improve performance. For instance, if
trying to learn sorting algorithms, a learner could discover the concepts of
partition and append whilst playing which could then help learn quicksort.

To further illustrate our play idea, imagine a child that had never seen Lego
before. Suppose you presented the child with Lego bricks and immediately
asked them to build a (miniature) house with a pitched roof. The child would
probably struggle to build the house without first knowing how to build a
stable wall or how to build a pitched roof. Now suppose that before you asked
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the child to build the house, you first left them alone to play with the Lego.
Whilst playing the child may build animals, gardens, ships, or many other
seemingly irrelevant things. However, the child is likely to discover reusable
and general concepts, such as the concept of a stable wall. As we discuss
in Section 2 in [1], the cognitive science literature shows that children can
better learn complex rules after a period of play rather than solely through
observation [17–19]. In this work, we explore whether a program induction
system can similarly better learn programs after a period of play.

Our idea of using play to discover useful BK contrasts with most forms of
program induction which usually require predefined, often human-engineered,
static BK as input [15, 3, 12, 16, 5, 11, 10, 9]. Our idea is related to program
induction approaches that perform multitask or meta learning [13, 6, 8, 7]. In
these approaches, a learner acquires BK in a supervised manner by solving sets
of user-provided tasks, each time saving solutions to the BK, which can then
be reused to solve other tasks. In contrast to these supervised approaches, our
play approach discovers useful BK in an unsupervised manner whilst playing.
Playing can therefore be seen as an unsupervised technique for a learner to
discover the BK necessary to solve complex tasks, i.e. a form of unsupervised
bootstrapping for supervised program induction.

We claim that playing can improve learning performance. To support this
claim, in [1], we make the following contributions:

– We introduce the idea of learning programs through play and show that
playing can reduce the textual complexity of target concepts which in turn
reduces the sample complexity of a learner.

– We implement our idea in Playgol, a new inductive logic programming
(ILP) system based on meta-interpretive learning (MIL) [14, 15, 3, 2], uses
Metagol [4], a MIL implementation, as the main learning algorithm.

– We experimentally show on two domains (robot planning and real-world
string transformations) that playing can significantly improve learning
performance.
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