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move/2

win 2(A,B):-win 2 1 1(A,B),not(win 2 1 1(B,C)).
win 2 1 1(A,B):-move(A,B),not(win 1(B,C)).

win 1(A,B):- move(A,B),won(B).

Figure 1: Noughts and Crosses: example of optimal move for O
from board A to board B

1 Introduction
World-class human players have been outperformed in a
number of complex two person games such as Go by Deep
Reinforcement Learning systems [Silver D. et al., 2016].
However, several drawbacks can be identified for these sys-
tems: 1) the data efficiency is unclear given they appear to
require far more training games to achieve such performance
than any human player might experience in a lifetime, 2)
These systems are not easily interpretable as they provide
limited explanation about how decisions are made, 3) these
systems do not provide transferability of the learned strate-
gies to other games.

We study in this work how machine learning strategies as
logic programs and from an explicit logical representation
can overcome these limitations. For example, an applicable
strategy for playing Noughts-and-Crosses is to lead double
attacks when possible, an example of which is shown in Fig-
ure 1. Player O executes a move from board A to board B
which creates two threats represented in green, and results in
a forced win for O. The rules presented in Figure 1 describe
such a strategy. A and B are variables representing states that
encode both the board description and the active player. A
move from A to B is a winning move if the opponent can not
immediately win and cannot make a move to prevent an im-
mediate win. These rules provide an understandable strategy
for winning in two moves. Moreover, they are transferable to
more complex games as they are generally true for describing
double attacks.

We introduce a new logical system called MIGO 1 based
upon Meta-Interpretive Learning and designed for learning

1From the children’s game-playing phrase My go! and the literal

two player game optimal strategies of the form presented
in Figure 1. It benefits from a strong inductive bias which
provides the capability to learn efficiently from a few exam-
ples of games played. Additionally, MIGO’s learned rules
are relatively easy to comprehend, and are demonstrated
to achieve significant transfer learning. MIGO uses Meta-
Interpretive Learning (MIL), a form of inductive logic pro-
gramming which supports predicate invention and learning
recursive theories [Muggleton and Lin, 2013].

2 Related Work
Various early approaches to game strategies [Shapiro and
Niblett, 1982; J.R. Quinlan, 1983] used the decision tree
learner ID3 to classify minimax depth-of-win for positions
in chess end games. These approaches used a set of care-
fully selected board attributes as features. Conversely, MIGO
is provided with a set of three relational primitives (move/2,
won/1, drawn/1) representing the minimal information a hu-
man would expect to know before playing a two person game.

Classical reinforcement learning approaches, and more re-
cently Deep Q-learning [Mnih et al., 2015], are based upon
the identifciation of a Q-function [Watkins, 1989]. The
learned strategy is implicitly encoded into the Q-value pa-
rameters. However, these frameworks generally require the
execution of many games to converge. Moreover, the learned
strategy is implicitly encoded into the Q-value parameters,
which do not provide interpretability of the learned strategy.

In the relational reinforcement learning (RRL) framework
[Džeroski et al., 2001], states, actions and policies are rep-
resented relationally. The learning is also based upon the
identification of Q-values whereas MIGO learns hypotheses
from examples of moves. Both RRL and MIGO provide the
ability to carry over the policies learned in simple domains to
more complex situations. However, most RRL systems aim
at learning single agent policy and, in contrast to MIGO, are
not designed to learn to play two person games.

3 Theoretical Framework
3.1 Credit Assignment Protocol
MIGO solves the Credit Assignment Problem from the Theo-
rems below for identifying moves that are necessarily positive

translation into English of the French word Ordinateur which means
computer.



examples for the task of winning or drawing.
We assume the learner P1 plays against opponent P2 which
follows an optimal strategy, and that games start from a ran-
domly chosen initial board B. We consider the following or-
dering over the different outcomes for P1:

won � drawn � lost

Then, the following Lemma and Theorems hold:
Lemma 1: The outcome of P1 monotonically decreases

during a game.
Theorem 2: If the outcome is won for P1, then every move

of P1 is a positive example for the task of winning.
Theorem 3: If an accurate winning strategy SW is known

and its execution from B fails, then if the outcome of the game
is drawn, then any move played by P1 or P2 is a positive ex-
ample for the task of drawing.

3.2 Meta-Interpretive Learning
MIGO is a MIL system [Muggleton et al., 2014; 2015]. MIL
is a form of ILP based on a Prolog meta-interpreter, and
which supports predicate invention, the learning of recursive
programs and Abstraction. MIGO is an extension of the MIL
system Metagol [Cropper and Muggleton, 2016].

4 MIGO Algorithm
4.1 Learning from positive examples
Theorems above provide a way of assigning only positive la-
bels to moves. Therefore, the learning is based upon positive
examples only. This is possible because of Metagol’s strong
language bias and ability to generalise from a few examples
only. However, one pitfall is the risk of over-generalisation
due to the absence of negative examples.

4.2 Dependent Learning
The learning operates in a staged fashion: simple definition
are first learned and added to the background knowledge, al-
lowing them to be reused during further learning tasks, and
thus to build up more and more complex definitions. For
successive values of k a series of inter-related definitions
are learned for predicates win k(A,B) and draw k(A,B).
These predicates define maintenance of minimax win and
draw in k-ply when moving from position A to B. The learn-
ing algorithm is presented as Algorithm 1, each action ’learn’
represents a call to Metagol. This approach is related to De-
pendent Learning [Lin et al., 2014].

4.3 Primitives and Metarules
Learned programs are formed of dyadic predicates, repre-
senting actions, and monadic predicates, representing fluents.
The background knowledge contains a general move genera-
tor move/2, which is an action executing a valid move on a
board, and a won and a drawn classifiers won/1 and drawn/1,
which are two fluents. In other words, the background knowl-
edge encodes the rules of the game. Additional primitives
based upon geometrical considerations have been considered
in a follow-up experiment aiming at improving the running
time of the learned strategy.
The metarules used are postcondition and a variant of post-
condition which includes negation of primitive predicates.

Algorithm 1 MIGO Algorithm
Input: Positive examples for win k and draw k
Output: Strategy for win k and draw k
1: for k in [1,Depth] do
2: for each example of win k/2 do
3: one shot learn a rule and add it to the BK
4: end for
5: Learn win k/2 and add it to the BK
6: end for
7: for k in [1,Depth] do
8: for each example of draw k/2 do
9: one shot learn a rule and add it to the BK

10: end for
11: Learn draw k/2 and add it to the BK
12: end for

Figure 2: Cumulative regret versus the number of games played for
Noughts-and-Crosses

5 Results

5.1 Cumulative Minimax Regret

Owing to tractability considerations, minimax regret of a
learning system cannot be evaluated in complex games. We
first consider simple games (Noughts-and-Crosses and Hexa-
pawn) for which minimax regret can be efficiently evaluated.
The reinforcement learning systems considered for compar-
ison are MENACE [Michie, 1963] which is the world’s
first reinforcezment learning system, Tabular Q-learning
[Watkins, 1989] and Deep Q-learning [Mnih et al., 2015].
In our experiment all tested variants of both normal and deep
reinforcement learning have worse performance (higher cu-
mulative minimax regret) than both variants of MIGO on
Noughts-and-Crosses as shown in Figure 2.

Depth Rule

1 win 1(A,B):-win 1 1 1(A,B),won(B).
win 1 1 1(A,B):-move(A,B),won(B).

2 win 2(A,B):-win 2 1 1(A,B),not(win 2 1 1(B,C)).
win 2 1 1(A,B):-move(A,B),not(win 1(B,C)).

3 win 3(A,B):-win 3 1 1(A,B),not(win 3 1 1(B,C)).
win 3 1 1(A,B):-win 2 1 1(A,B),not(win 2(B,C)).

Table 1: Winning strategy learned for Noughts and Crosses



5.2 Comprehensibility
The winning strategy learned for Noughts and Crosses is pre-
sented on Table 1. Strategies learned in this form provide a
certain form of comprehensibility. However, they seem less
comprehensible as the depth augments. We aim at study-
ing whether MIGO additionally fulfils Michie’s ultra-strong
Machine Learning criteria, which requires the learner to be
able to teach such learned strategies to humans, whose per-
formance is consequently increased to a level beyond that
of the human studying the training data alone [Muggleton
et al., 2018]. Initial experiments have been conducted, in
which school children were provided with feedback on posi-
tional play based on MIGO’s learned rules. Additional primi-
tives have been considered to reduce the execution time of the
learned strategy and therefore improve the comprehensibility
for large depth.

6 Conclusion and Future Work
This work introduces a novel logical system named MIGO for
learning two-player-game strategies and based upon the MIL
framework. Our experiment have demonstrated that MIGO
achieves lower Cumulative Minimax Regret compared to
Deep and classical Q-Learning. Moreover, strategies learned
with MIGO are general enough to be transferable to more
complex games. Learned strategies are also relatively easy
to comprehend.

One current limitation of MIGO is the limited scalability.
The execution of learned strategies is computationally ex-
pensive as it browses the minimax tree to evaluate whether
a move is a winning move. Therefore the running time in-
creases rapidly with the state dimensions. The scalability
is also limited by initial assumptions: the current version
of MIGO requires a minimax player as opponent which is
intractable in large dimensions. We further plan to extend
this framework by relaxing our credit assignment protocol
and weakening the optimal opponent assumption. A solution
would be to learn from self-play.
Despite these limitations, we believe the novel approach in-
troduced in this work opens exciting new avenues for ma-
chine learning game strategy.
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