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Abstract. Despite the successes achieved with deep neural networks
over recent years, there has been an increasing awareness recently that
there are tasks that still elude neural network learning, specifically the
generalisation from patterns to rules. We tackle the problem of learn-
ing abstract rules by introducing Relation Based Patterns (RBP) which
model equality relationships. RBP creates an inductive bias in the neural
networks that leads to the learning of generalisable solutions. We observe
that integration of RBP leads to almost perfect generalisation in abstract
rule learning tasks with synthetic data and to improvements in neural
language modelling on real-world data.
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1 Introduction

Humans are very effective at extracting abstract relations from sensory input, of-
ten after very brief exposure. In a well-known study, [3] showed that 7-month old
infants learn to recognize patterns defined by simple grammatical rules. These
rules define abstract patterns based on equality relations, creating structures
such as ABA or ABB. The infants learn the patterns from a small number of ex-
amples after just two minutes of familiarization, but when the same experiment
was applied to recurrent neural networks, they failed to recognise the abstract
patterns. More recently, a lack of linguistic systematicity has been in deep learn-
ing for machine translation [2] and shortcomings in visual abstraction have been
identified [4].

We tackle the problem of learning abstract rules in neural networks by in-
troducing Relation Based Patterns (RBP) to model equality relationships. The
RBP model has been designed as a set of additional neurons with a rectified dif-
ference activation and fixed-weight connections that connect them to standard
networks. The RBP structure creates an inductive bias in the neural networks
that favours the learning of generalisable solutions. We observe that integration
of RBP leads to almost perfect generalisation in abstract rule learning tasks with
synthetic data and to improvements in prediction tasks on text and music [7, 6].
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Type Standard FFNN Early Fusion Mid Fusion

1. ABA vs other 50 (1.86) 65 (1.26) 100 (0.00)
2. ABB vs other 50 (1.83) 65 (1.29) 100 (0.00)
3. ABA-BAB vs other 50 (1.73) 75 (1.22) 100 (0.05)
4. ABA vs ABB 50 (1.81) 55 (1.18) 100 (0.00)
5. ABC vs other 50 (1.68) 65 (1.04) 100 (0.00)

Table 1: Accuracy (in %) and standard deviation over 10 simulations (in brack-
ets) using different models for Abstract Pattern Learning (ABA vs other, ABB
vs other, ABA-BAB vs other, ABA vs ABB, ABC vs other).

2 Relation Based Patterns (RBP)

The RBP model is based on an input that consists of multiple items, where each
can be represented by a vector of input neurons. We use the DR units to compare
corresponding neurons in different vectors. For the comparison we introduce
differentiator-rectifier (DR) units, which calculate the absolute difference of two
inputs: f(x, y) = |x− y|. We create one DR unit for every pair of corresponding
input unit with the weights from the inputs to the DR units fixed at 1. We have
multiple vector comparisons that correspond to the different equality relations
in patters, e.g. equality of the pairs of vectors in positions (1,2), (1,3), (2,3), to
recognise patterns of the forms ABA, ABB, AAB, ABC etc.

We integrate DR units in Early Fusion (added to the input layer) and Mid
Fusion (added to the hidden layer).

3 Experiments and Results

3.1 Learning Abstract Relations

In this task, triples of the forms ABA, ABB, ABC, AAB and BAB are given
to the network as a supervised formulation of [3] with some variants. We use a
75/25 train/test split with separate vocabulary between them. The results of the
experiments are given in Table 1. We can observe that without RBP networks
never improve above chance level (50%), and Mid Fusion leads to almost perfect
results.

3.2 Character and Melody Prediction

For character prediction we use recurrent neural networks and their gated vari-
ants (LSTM and GRU) on a subset of the Gutenberg electronic book collection1,
consisting of 42252 words. We use 2 hidden layers with 50 neurons each, an ini-
tial learning rate of 0.01 and the network training converged after 30 epochs.
The results using context size 5 are summarised in Table 2 show a a consistent
improvement with RBP.

1 https://www.gutenberg.org/
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Type RNN GRU LSTM

Simple Network 3.8281 3.8251 3.8211
Early Fusion 3.8254 3.8163 3.8162
Mid Fusion 3.8112 3.8134 3.8148

Table 2: Average Cross Entropy
Loss per predicted character using
context length 5.

Type RNN GRU LSTM

Simple Network 2.6994 2.5702 2.5589
Early Fusion 2.6992 2.5714 2.5584
Mid Fusion 2.6837 2.5623 2.5483

Table 3: Average Cross Entropy
Loss per note for Melody Prediction
Task using context length 5.

In another experiment, we tested RBP as a pitch prediction in melodies
as an extension of the work done by [1] with the dataset taken from the Essen
Folk Song Collection [5] using recurrent neural networks and their gated variants
(LSTM and GRU). We performed a grid search for each context length for hyper
parameter tuning, with [10,30,50,100] as the size of the hidden layer and [30,50]
epochs with learning rate set to 0.01, with one hidden layer and context length
of size 5. The results in Table 3 summarize the results and show a consisten
reduction in cross entropy with RBP.

4 Conclusions

We have shown that ‘Relation Based Patterns’ (RBP) as an inductive bias enable
the learning of equality rules with neural networks. We observed that networks
with suitable RBP structure learn abstract grammar patterns with almost 100%
accuracy and also lead to improvements in character prediction and melody pre-
diction tasks. In future, we will extend this work towards improving the perfor-
mance of neural networks in providing better abstractions and generalizations.
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